
S.I . : VISVESVARAYA

An analysis of executable size reduction by LLVM passes

Shalini Jain1 • Utpal Bora1 • Prateek Kumar1 • Vaibhav B. Sinha1 •

Suresh Purini2 • Ramakrishna Upadrasta1

Received: 3 December 2018 / Accepted: 27 May 2019 / Published online: 3 June 2019

� CSI Publications 2019

Abstract The formidable increase in the number of

smaller and smarter embedded devices has compelled

programmers to develop more and more specialized

application programs for these systems. These resource

intensive programs that have to be executed on limited

memory systems make a strong case for compiler opti-

mizations that reduce the executable size of programs.

Standard compilers (like LLVM) offer an out-of-the-box -

Oz optimization option—just a series of compiler opti-

mization passes—that is specifically targeted for the

reduction of the generated executable size. In this paper,

we aim to analyze the effects of optimizations of LLVM

compiler on the reduction of executable size. Specifically,

we take the size of the executable as a metric and attempt

to divide the -Oz series into logical groups and study their

individual effects; while also study the effect of their

combinations. Our preliminary study over SPEC CPU 2017

benchmarks gives us an insight into the comparative effect

of the groups of passes on the executable size. Our work

has potential to enable the user to tailor a custom series of

passes so as to obtain the desired executable size.

Keywords Compilers � Compiler optimizations � Code

size optimizations

1 Introduction

The ever increasing demand for smart embedded devices

has lead to the development of more sophisticated appli-

cations for these memory constrained devices. One of the

major roadblocks in the execution of such programs on

embedded devices is dealing with the meagre amount of

available memory. While this has forced programmers to

develop programs with smaller executables, it has also

forced compiler writers to look for optimizations to reduce

the executable size. The Oz optimization level of the

LLVM compiler [1] is created for this specific need, sim-

ilar to the O1, O2, O3 levels that target reduction of run-

ning time.

In LLVM 5.0, the Oz optimization has a total of 218

passes, of which 70 are transformation passes, some of

which are scheduled based on requirements by other pas-

ses. Currently, it is clearly not known which passes, or

groups of passes, have the highest effect on the exe-

cutable size. In our work, we disassemble the series of

passes of O1 and observe the results of the groups of these

passes on executable size.

We first make a comparative study of the exe-

cutable size obtained by the standard optimization

An earlier version of this work was peer reviewed and selected for

presentation at EuroLLVM 2018.

& Ramakrishna Upadrasta

ramakrishna@iith.ac.in

Shalini Jain

cs15resch11010@iith.ac.in

Utpal Bora

cs14mtech11017@iith.ac.in

Prateek Kumar

cs15btech11031@iith.ac.in

Vaibhav B. Sinha

cs15btech11034@iith.ac.in

Suresh Purini

suresh.purini@iiit.ac.in

1 Computer Science and Engineering, Indian Institute of

Technology, Hyderabad, India

2 Computer Science and Engineering, International Institute of

Information Technology, Hyderabad, India

123

CSIT (June 2019) 7(2):105–110

https://doi.org/10.1007/s40012-019-00248-5

http://orcid.org/0000-0002-5290-3266
http://crossmark.crossref.org/dialog/?doi=10.1007/s40012-019-00248-5&amp;domain=pdf
https://doi.org/10.1007/s40012-019-00248-5


levels—O0, O1, O2, O3, Os, Oz—offered by LLVM on

standard benchmarks (SPEC CPU 2017 [2]). Then, we

break the series of transformation passes in Oz level into

various logical groups; each group broadly performs a

specific variety of optimization, like as canonicalization,

loop optimization, dead code elimination, vectorization,

etc. We follow the above to study of the effect of these

groups as well as combinations of groups on

executable size.

In our study, we attempt to give new insights into the

following two important questions related to executable-

size:

• Which group of passes have the most pronounced effect

on the executable size?

• Is it possible to break down the specific groups of

passes in LLVM to spot the exact (subset of) passes,

that have the highest effect on code bloat?

We conclude our study by formulating empirical results

of the trade-off between reduction (in executable size)

versus run-time obtained by groups and their combinations.

Our results can be used to tailor a cosmetic series of

passes which can be used for highly memory critical

applications. The results of our work on the effect of

groups of passes thus provides an end-to-end answer for

programmers seeking for compiler based executable size

reduction. We also believe that our work has potential to

allow one to choose the set of passes that substantially

improve the executable size, while losing some amount of

running-time.

The following is the organization of our paper: In

Sect. 2, we show comparison of the basic optimization

flags in term of executable binary size and execution time.

In Sect. 3, we propose a grouping of the passes. In Sect. 4,

we show the results for binary code-bloat and run-time. In

Sect. 5, we perform a sub-grouping on group G0 for

checking the performance of individual optimizations. In

Sect. 6, we conclude our work along with discussing some

limitations and future work.

2 Comparison of the basic optimization flags

In LLVM, O0, O1, O2, O3, Os and Oz are standard opti-

mization flags, extensively used for the optimization of C

and C?? programs. These optimizations mainly target the

objectives of improving the run-time of the compiled bin-

ary and also reducing the size of the binary.

In this section, we perform a comparison of these opti-

mization flags on SPEC CPU 2017 Benchmarks. For this,

we compile the SPEC CPU 2017 benchmark suite with the

flags O0, O1, O2, O3, Os and Oz and obtain the total

binary size, and its run time. For this experiment we use an

Intel 2.30 GHz x86 64 machine. Figures 1 and 2 represents

the sizes of the binary and run time of the benchmark codes

for the different optimization flags respectively.

It can be observed from Fig. 2 that the run time of O3 is

lowest among all. This is justified as O3 concentrates on

only optimization with run time as metric. It can also be

seen that the run time produced by Oz is often not very

high (except a few cases) as compared to O3.

In Fig. 1, it can be seen that, in general, executable size

is highest for O3 followed by O2. Oz generally has the

smallest executable size followed by Os. This can be

explained as O3 concentrates mainly on run-time opti-

mizations and gives lesser importance to executable size.

But it should be noted here that executable size is not

completely neglected by O3; we will see later in Sect. 4,

that executable size still reduces when compared to no

optimization (option O0).

Average executable size and average run-time relative

to O0 for different optimization levels are shown in Figs. 3

and 4 respectively. Figure 5 represents the pareto graph for

run-time and executable size relative to O0 for SPEC CPU

2017 benchmarks.

Fig. 1 Executable-size comparison versus O0 (SPEC CPU 2017)

Fig. 2 Run-time comparison versus O0 (SPEC CPU 2017)

106 CSIT (June 2019) 7(2):105–110

123



3 Grouping of passes

Before we begin to obtain the values of run-time and

executable-size for each pass, we need to group the passes.

This is primarily because it is hard to run all the passes of

Oz individually, as they are huge in number. Also, many

passes are not standalone passes; they are enabled only

after some other optimizations. Moreover, some of them

are mandatory prerequisite passes and hence must always

be run.

So, for the reasons mentioned above, we attempt to

group the passes of Oz logically so that each group broadly

performs some task. The passes considered here are only

transformation passes and not analysis passes; the trans-

formation pass automatically calls its corresponding anal-

ysis passes in a demand driven manner.

3.1 Formation of groups

For breaking the series of passes into groups, we choose the

series of passes of Oz. Table 1 contains all the groups that

we constructed from Oz optimization sequence.

Changing the order of the passes may disrupt the series

of optimization intended, so we merely break the series at

logical positions. Now we briefly describe each group:

The group GF forms the function pass set, which is

applied at function scope. While the rest from G0–G5 form

the module pass series.

GF: This is a set of very important and the most

influential passes which are applied at function scope.

These are default set of passes which are run in all our

experiments whenever we run any of G0–G5.

G0: It contains the most elementary passes. This is a

compulsory group, which means we do not run any group

without running G0 first. The major passes in this group

include memory to register pass, dead argument elimina-

tion pass, etc. This group also contains the compulsory pass

inline (which is the only proper transformation pass which

appears in O0, i.e. no optimization).

G1: This is a general group of passes, the major ones

among them involved in SSA form conversion. Moreover,

it has other exciting passes like tail call elimination, etc.

G2: This group concentrates on loop optimizations like

loop rotate, loop invariant code motion, loop unswitch,

loop deletion, loop unrolling, etc. Moreover, it has other

passes that aid in this process like reassociate, induction

variable pass, etc.

G3: This group is broadly involved in dead code

elimination and so contains passes like dead store elimi-

nation, aggressive dead code elimination, bit-tracking dead

code elimination, etc.

G4: This group concentrates on loop optimizations and

vectorization. It contains passes like loop rotate, loop dis-

tribute, loop vectorize, slp vectorize, loop unroll, loop

invariant code motion etc.

G5: This is the last group broadly involved in dead code

elimination. It consists of Strip dead prototypes, global

dead code elimination, constant merging, etc.

Fig. 3 Executable-size versus optimization levels (SPEC CPU 2017)

Fig. 4 Run time versus optimization levels (SPEC CPU 2017)

Fig. 5 Run time versus executable-size (relative to -O0)

CSIT (June 2019) 7(2):105–110 107

123



All optimization levels consist of the verify pass at the

end of optimization which verifies the sanity of the opti-

mized IR. We do not add it to any group since it is a

compulsory pass and must be run at the end of each series

of groups we consider, either individual or combination.

3.2 Combination of groups

We experimented the benchmarks on individual groups as

well as the combination of groups. While forming the

combinations, we take care of the following points:

• G0 is a compulsory (prerequisite) group, and we always

run it first even when we run individual groups. Since it

is compulsory we do not mention it when we name the

groups; it is considered implicitly present.

• While forming groups, we respect the order of the

groups, i.e. we form combinations such as G3G4 but

not like G4G3 because this is against the natural order

of the passes.

4 Results

We have done the experiments on the SPEC CPU 2017

benchmark on an Intel Machine. This section shows the

results obtained from individual groups and their

combinations.

4.1 Results of binary code bloat

First, we plot the relative sizes of binary as compared to no

optimizations (O0). We plot relative sizes since the binary

sizes are quite large and the graphs are not very clear if we

plot directly.

From Fig. 6 we observe that Oz reduces the binary code

size as compared to O0. The major reduction of code size

comes by the application of GF and G0. G1 further reduces

the code size, but all the other groups increase the binary

size. This claim becomes clear from Fig. 7. In Fig. 7, we

plot the relative code bloat of all groups against G0. We see

that apart from G1 no other group contribute much. Note

that here each group first runs on G0 and then itself. So we

conclude that G0 passes do the majority of shrinkage while

the other groups do not have much effect. Note that G0

contains the compulsory passes like mem2reg, etc, which

are applied in all levels of optimizations. So we can safely

predict that its effect will be reflected in all the optimiza-

tion levels. Moreover, we also note that G1 was majorly

concentrating on passes like SSA form conversion, etc.

Thus we may say that SSA and these passes together

reduce the code size.

From Figs. 6 and 8, we make the following conclusion:

as the number of passes increases the individual impact of

Table 1 Different groups of passes

Group

name

Sequence of passes

GF -simplifycfg -sroa -early-cse -lower-expect

G0 -forceattrs -inferattrs -ipsccp -globalopt -mem2reg -deadargelim -instcombine -simplifycfg -
prune-eh -inline -functionattrs

G1 -sroa -early-cse-memssa -speculative-execution -jump-threading -correlated-propagation -
simplifycfg -instcombine -tailcallelim -simplifycfg

G2 -reassociate -loop-rotate -licm -loop-unswitch -simplifycfg -instcombine -indvars -loop-
idiom -loop-deletion -loop-unroll

G3 -mldst-motion -gvn -memcpyopt -sccp -bdce -instcombine -jump-threading -correlated-
propagation -dse -adce -licm -simplifycfg -instcombine -elim-avail-extern -rpo-
functionattrs -float2int

G4 -loop-rotate -loop-distribute -loop-vectorize -loop-load-elim -instcombine -
latesimplifycfg -instcombine -loop-unroll -instcombine -licm -alignment-from-assumptions

G5 -strip-dead-prototypes -globaldce -constmerge -loop-sink -instsimplify -simplifycfg

Fig. 6 Executable size: serial application of groups (SPEC CPU

2017)

108 CSIT (June 2019) 7(2):105–110

123



passes gets blurred. The combination of groups slowly

converge to the size of Oz as the size of the groups

increases. This was evident from Fig. 6 the code bloat

obtained with only G1, G1G2, G1G2G3 etc.

4.2 Results of run time

Again, as mentioned previously we obtain the run time

using optimizations from individual groups and their

combinations. This subsection presents these results. First,

we plotted the relative run time of individual groups as

compared to no optimizations (O0). We plot relative per-

centage since the run time varies across different

benchmarks.

From the Fig. 8, we observe that Oz takes the least run

time which follows from the fact that it runs the highest

number of passes. We see that among the individual groups

GF gives the maximum reduction. This leads us to suspect

that GF is very important for the overall run time. G0 also

helps for run time. G1, G2, G3, G4 and G5 almost have no

effect on run time.

This confirms our claim that GF and G0 contribute to the

major section of optimization run time. We observe that as

the size of the combination of groups increase, the run time

decreases as a response to the increase in the number of

passes. We also plotted the relative percentage of the

compile time varies across different benchmarks in Fig. 9.

5 Sub-groups

From our above experiments, we saw that Group G0 has a

very significant impact on both the run time and exe-

cutable size. So to pinpoint the exact few passes among the

Group G0 passes which are the most significant, we further

break down Group G0 into subgroups and observe their

effects on executable size. Figure 10 shows the subgroup-

ing of group G0.

Observe here that the subgrouping is not done in a way

similar to grouping. Groups were disjoint parts of the full

optimization series, but subgroups are not so. The reason

for this is that we have to run -instcombine and -

simplifycfg after any of the passes as they expect

these passes after them.

Fig. 7 Effect of individual groups

Fig. 8 Run time: serial application of groups (SPEC CPU 2017)

Fig. 9 Compile time: effective groups (SPEC CPU 2017)

Fig. 10 The sub-groups of G0

CSIT (June 2019) 7(2):105–110 109

123



We now present the results of executable size by these

subgroups in Fig. 11. Note that before running the passes

of any of the subgroups, the passes of GF are always

executed.

Surprisingly we observe that a lot of optimization hap-

pens in GF itself. And the complete execution of G0 is

necessary to have a reasonable impact upon the

executable size.

The observation of the impact of GF passes motivates us

to break down GF further and examine the impact by the

passes within it. Since there are only four passes in GF; we

do not form subgroups, we just observe the impact of

successive executions of the passes.

From Fig. 12, we clearly see the significance of the first

pass of GF: -simplifycfg. It alone contributes to

roughly 20% of reduction from O0. This is expected as this

-simplifycfg would execute directly on the IR created

by LLVM and so it would clean up a lot of code. Moreover

the impact of the second pass: -sroa can also not be

ignored. In fact, it alone contributes to about 10% addi-

tional decrease on executable size. The other two passes do

not have much impact on executable size.

We however do not analyze the impact of the subgroups

of G0 and GF on run time. This is because these two groups

have are essential and must always be run whenever we

optimize code.

Our experiments show the impact of the passes of G0

and GF on executable size. We conclude from the experi-

ments in Sects. 4 and 5 that we must always execute the GF

and G0 passes whenever we want to optimize.

6 Conclusions, limitations and future work

In this paper we examined the impact on run time and

binary code size of the passes and optimization levels of

LLVM on Intel Architecture. We proposed a logical

grouping of passes and studied their impact on the run time

and the binary size. We also subdivided the most signifi-

cant groups to discover the exact passes having the highest

impact.

The binary size for each combination of groups may not

be present normally because of resource constraints. In

such a case, it would be desirable to be able to predict the

binary size obtained by combinations of groups, given the

binary size of individual passes along with O0 (unopti-

mized) and O3. In our future work, we would address the

above problem by posing it as a regression problem.

Acknowledgements This work has been partially supported by the

Project under The Visvesvaraya Ph.D. Scheme of Ministry of Elec-

tronics & Information Technology, Government of India, being

implemented by Digital India Corporation (formerly Media Lab

Asia). The work was also enabled by travels funded by The LLVM

Foundation. The fellowship has helped in publishing research con-

tributions in [3–6].

Funding Funding was provided by Department of Electronics and

Information Technology, Ministry of Communications and Informa-

tion Technology.

References

1. Lattner C, Adve V (2004) LLVM: a compilation framework for

lifelong program analysis and transformation. In: Proceedings of

the international symposium on Code generation and optimization:

feedback-directed and runtime optimization (CGO ’04). IEEE

Computer Society, Washington, p 75

2. https://www.spec.org/cpu2017/

3. Dangeti TK, Bora U, Das S, Grosser T, Upadrasta R (2017)

Improved loop distribution in LLVM using polyhedral depen-

dences. In: The fourth workshop on the LLVM compiler infras-

tructure in HPC. https://llvm-hpc4-workshop.github.io/

4. Jain S, Kumar K, Purini S, Das D, Upadrasta R (2017) An LLVM

based loop profiler. US LLVM Developers’ meeting. https://llvm.

org/devmtg/2017-10/

5. Bora U, Grosser T, Upadrasta R (2016) PolyhedralInfo: polly as an

analysis pass in LLVM. Google Summer of Code 2016 and

Poster?Lightning Talk, US LLVM Developers’ meeting

6. Bhatu Pratik (2015) Compile-time optimizations in polly. Google

Summer of Code. https://www.googlemelange.com/archive/gsoc/

2015/orgs/llvm/projects/bhatuzdaname.html

Fig. 11 Analysis of serial application of subgroups

Fig. 12 Inside the function passes

110 CSIT (June 2019) 7(2):105–110

123

https://www.spec.org/cpu2017/
https://llvm-hpc4-workshop.github.io/
https://llvm.org/devmtg/2017-10/
https://llvm.org/devmtg/2017-10/
https://www.googlemelange.com/archive/gsoc/2015/orgs/llvm/projects/bhatuzdaname.html
https://www.googlemelange.com/archive/gsoc/2015/orgs/llvm/projects/bhatuzdaname.html

	An analysis of executable size reduction by LLVM passes
	Abstract
	Introduction
	Comparison of the basic optimization flags
	Grouping of passes
	Formation of groups
	Combination of groups

	Results
	Results of binary code bloat
	Results of run time

	Sub-groups
	Conclusions, limitations and future work
	Funding
	References




